Efficient geological point cloud registration method combining dimension reduction and feature points

Author:

Mo Site1,Yin Nan1,Liu Xing1,Li Xin2,Ma Juan3,Zhang Mingzhi3,Li Bixiong1,Wang Haoxin1,Dai Honghe1

Affiliation:

1. Sichuan University

2. DeepGlint

3. China Geological Environmental Monitoring Institute

Abstract

In geological scene registration with laser-scanned point cloud data, traditional algorithms often face reduced precision and efficiency due to extensive data volume and scope, which increase complexity and computational demands. This study introduces, to our knowledge, a novel registration method to address these limitations. Through dimension reduction that integrates height and curvature data, this approach converts point clouds into images, streamlining feature extraction. Log-variance enhancement mitigates information loss from dimensionality reduction, aiding in coarse registration. Further, incorporating weighted distances of feature points into the Iterative Closest Point (ICP) algorithm improves precision in point matching. Experiments indicate an average threefold increase in initial registration efficiency compared to traditional coarse registration algorithms, with improvements in accuracy. The optimized ICP algorithm achieves 50% and 15% accuracy improvements across various datasets, enhancing large-scale geological point cloud data registration.

Funder

Geological Survey Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3