Maize Ear Height and Ear–Plant Height Ratio Estimation with LiDAR Data and Vertical Leaf Area Profile

Author:

Wang Han12,Zhang Wangfei2,Yang Guijun13,Lei Lei13,Han Shaoyu1,Xu Weimeng1,Chen Riqiang1,Zhang Chengjian1,Yang Hao1ORCID

Affiliation:

1. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. College of Forestry, Southwest Forestry University, Kunming 650224, China

3. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

Abstract

Ear height (EH) and ear–plant height ratio (ER) are important agronomic traits in maize that directly affect nutrient utilization efficiency and lodging resistance and ultimately relate to maize yield. However, challenges in executing large-scale EH and ER measurements severely limit maize breeding programs. In this paper, we propose a novel, simple method for field monitoring of EH and ER based on the relationship between ear position and vertical leaf area profile. The vertical leaf area profile was estimated from Terrestrial Laser Scanner (TLS) and Drone Laser Scanner (DLS) data by applying the voxel-based point cloud method. The method was validated using two years of data collected from 128 field plots. The main factors affecting the accuracy were investigated, including the LiDAR platform, voxel size, and point cloud density. The EH using TLS data yielded R2 = 0.59 and RMSE = 16.90 cm for 2019, R2 = 0.39 and RMSE = 18.40 cm for 2021. In contrast, the EH using DLS data had an R2 = 0.54 and RMSE = 18.00 cm for 2019, R2 = 0.46 and RMSE = 26.50 cm for 2021 when the planting density was 67,500 plants/ha and below. The ER estimated using 2019 TLS data has R2 = 0.45 and RMSE = 0.06. In summary, this paper proposed a simple method for measuring maize EH and ER in the field, the results will also offer insights into the structure-related traits of maize cultivars, further aiding selection in molecular breeding.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3