Affiliation:
1. Beijing Key Laboratory of Digital Plant,
National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China.
2. Beijing Research Center for Information Technology in Agriculture,
Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
3. China National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China.
Abstract
The lack of efficient crop phenotypic measurement methods has become a bottleneck in the field of breeding and precision cultivation. However, high-throughput and accurate phenotypic measurement could accelerate the breeding and improve the existing cultivation management technology. In view of this, this paper introduces a high-throughput crop phenotype measurement platform named the LQ-FieldPheno, which was developed by China National Agricultural Information Engineering Technology Research Centre. The proposed platform represents a mobile phenotypic high-throughput automatic acquisition system based on a field track platform, which introduces the Internet of Things (IoT) into agricultural breeding. The proposed platform uses the crop phenotype multisensor central imaging unit as a core and integrates different types of equipment, including an automatic control system, upward field track, intelligent navigation vehicle, and environmental sensors. Furthermore, it combines an RGB camera, a 6-band multispectral camera, a thermal infrared camera, a 3-dimensional laser radar, and a deep camera. Special software is developed to control motions and sensors and to design run lines. Using wireless sensor networks and mobile communication wireless networks of IoT, the proposed system can obtain phenotypic information about plants in their growth period with a high-throughput, automatic, and high time sequence. Moreover, the LQ-FieldPheno has the characteristics of multiple data acquisition, vital timeliness, remarkable expansibility, high-cost performance, and flexible customization. The LQ-FieldPheno has been operated in the 2020 maize growing season, and the collected point cloud data are used to estimate the maize plant height. Compared with the traditional crop phenotypic measurement technology, the LQ-FieldPheno has the advantage of continuously and synchronously obtaining multisource phenotypic data at different growth stages and extracting different plant parameters. The proposed platform could contribute to the research of crop phenotype, remote sensing, agronomy, and related disciplines.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献