Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance betweenFLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering

Author:

Wollenberg Amanda C.1,Strasser Bárbara1,Cerdán Pablo D.1,Amasino Richard M.1

Affiliation:

1. Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706 (A.C.W.); Fundación Instituto Leloir, 1405 Ciudad de Buenos Aires, Argentina (B.S., P.D.C.); Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina (P.D.C.); and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (R.M.A.)

Abstract

AbstractThe timing of the floral transition in Arabidopsis (Arabidopsis thaliana) is influenced by a number of environmental signals. Here, we have focused on acceleration of flowering in response to vegetative shade, a condition that is perceived as a decrease in the ratio of red to far-red radiation. We have investigated the contributions of several known flowering-time pathways to this acceleration. The vernalization pathway promotes flowering in response to extended cold via transcriptional repression of the floral inhibitor FLOWERING LOCUS C (FLC); we found that a low red to far-red ratio, unlike cold treatment, lessened the effects of FLC despite continued FLC expression. A low red to far-red ratio required the photoperiod-pathway genes GIGANTEA (GI) and CONSTANS (CO) to fully accelerate flowering in long days and did not promote flowering in short days. Together, these results suggest a model in which far-red enrichment can bypass FLC-mediated late flowering by shifting the balance between FLC-mediated repression and photoperiodic induction of flowering to favor the latter. The extent of this shift was dependent upon environmental parameters, such as the length of far-red exposure. At the molecular level, we found that far-red enrichment generated a phase delay in GI expression and enhanced CO expression and activity at both dawn and dusk. Finally, our analysis of the contribution of PHYTOCHROME AND FLOWERING TIME1 (PFT1) to shade-mediated rapid flowering has led us to suggest a new model for the involvement of PFT1 in light signaling.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3