CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering ofArabidopsis

Author:

An Hailong1,Roussot Clotilde1,Suárez-López Paula1,Corbesier Laurent1,Vincent Coral1,Piñeiro Manuel1,Hepworth Shelley1,Mouradov Aidyn1,Justin Samuel2,Turnbull Colin2,Coupland George1

Affiliation:

1. Max Planck Institute for Plant Breeding, Carl von Linne Weg 10, D-50829 Cologne, Germany

2. Department of Agricultural Sciences, Imperial College London, Wye Campus, Wye,Kent TN25 5AH, UK

Abstract

Flower development at the shoot apex is initiated in response to environmental cues. Day length is one of the most important of these and is perceived in the leaves. A systemic signal, called the floral stimulus or florigen, is then transmitted from the leaves through the phloem and induces floral development at the shoot apex. Genetic analysis in Arabidopsisidentified a pathway of genes required for the initiation of flowering in response to day length. The nuclear zinc-finger protein CONSTANS (CO) plays a central role in this pathway, and in response to long days activates the transcription of FT, which encodes a RAF-kinase-inhibitor-like protein. We show using grafting approaches that CO acts non-cell autonomously to trigger flowering. Although CO is expressed widely,its misexpression from phloem-specific promoters, but not from meristem-specific promoters, is sufficient to induce early flowering and complement the co mutation. The mechanism by which COtriggers flowering from the phloem involves the cell-autonomous activation of FT expression. Genetic approaches indicate that CO activates flowering through both FT-dependent and FT-independent processes, whereas FT acts both in the phloem and the meristem to trigger flowering. We propose that, partly through the activation of FT, CO regulates the synthesis or transport of a systemic flowering signal, thereby positioning this signal within the established hierarchy of regulatory proteins that controls flowering.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 569 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3