A Putative CCAAT-Binding Transcription Factor Is a Regulator of Flowering Timing in Arabidopsis

Author:

Cai Xiaoning1,Ballif Jenny1,Endo Saori1,Davis Elizabeth1,Liang Mingxiang1,Chen Dong1,DeWald Daryll1,Kreps Joel1,Zhu Tong1,Wu Yajun1

Affiliation:

1. Department of Plants, Soils, and Climate (X.C., J.B., S.E., E.D., M.L., Y.W.), Center for Integrated BioSystems (D.C.), and Department of Biology (D.D.), Utah State University, Logan, Utah 84322; Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (J.K., T.Z.); and Diversa Corporation, San Diego, California 92121 (J.K.)

Abstract

AbstractFlowering at the appropriate time of year is essential for successful reproduction in plants. We found that HAP3b in Arabidopsis (Arabidopsis thaliana), a putative CCAAT-binding transcription factor gene, is involved in controlling flowering time. Overexpression of HAP3b promotes early flowering while hap3b, a null mutant of HAP3b, is delayed in flowering under a long-day photoperiod. Under short-day conditions, however, hap3b did not show a delayed flowering compared to wild type based on the leaf number, suggesting that HAP3b may normally be involved in the photoperiod-regulated flowering pathway. Mutant hap3b plants showed earlier flowering upon gibberellic acid or vernalization treatment, which means that HAP3b is not involved in flowering promoted by gibberellin or vernalization. Further transcript profiling and gene expression analysis suggests that HAP3b can promote flowering by enhancing expression of key flowering time genes such as FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Our results provide strong evidence supporting a role of HAP3b in regulating flowering in plants grown under long-day conditions.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3