MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis

Author:

Adamczyk Benjamin J.1,Fernandez Donna E.1

Affiliation:

1. Department of Botany, University of Wisconsin, Madison, Wisconsin 53706–1381

Abstract

Abstract MADS box genes encode transcription factors that play important regulatory roles at various stages in plant development. Transcripts encoding the MIKC*-type (for MADS DNA-binding domain, Intervening domain, Keratin-like domain, and C-terminal domain) factors, a divergent clade, are enriched in mature pollen. Previous studies have shown that these proteins bind DNA as heterodimers, which form between S- and P-class MIKC* proteins. In this study, Arabidopsis (Arabidopsis thaliana) pollen with little or no MIKC* activity was produced by combining strong loss-of-function alleles of the S-class proteins AGAMOUS-LIKE66 (AGL66) and AGL104. Double mutant plants produce pollen but have severely reduced fertility due to reduced pollen viability, delayed germination, and aberrant pollen tube growth. Microarray analysis of the mutant pollen revealed that the loss of MIKC* regulation has a major impact on pollen gene expression. Pollen competition assays involving various combinations of AGL65, AGL66, AGL104, and AGL94 mutant alleles provided genetic evidence that at least three heterodimers (AGL30-AGL104, AGL65-AGL104, and AGL30-AGL66) form and function in at least a partially redundant fashion in pollen. Analyses of transcript abundance in wild-type and mutant pollen indicated that AGL65-containing complexes are likely to be more abundant than the others and that accumulation of AGL30 and AGL94 transcripts increases in response to reductions in MIKC* activity. These results were combined to create a model to describe MIKC* heterodimer contributions in pollen.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3