Deciphering the Regulatory Mechanism of PmMYB21 in Early Flowering of Prunus mume through Dap-Seq and WGCNA Analysis

Author:

Yuan Xi12,He Ran1,Zhang Hui1,Liu Dongyan1,Liu Donghuan1,Niu Zhihong1,Zhang Yu1,Xia Xinli2ORCID

Affiliation:

1. Beijing Botanical Garden, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China

2. State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

Abstract

Prunus mume Siebold & Zucc (mei) is a horticulturally important fruit tree that undergoes anthesis in winter. Therefore, its flowering process is challenged by low-temperatures conditions. The transcription factor (TF) MYB21 is pivotal in regulating the flowering process, and particularly functions in petal expansion and filament elongation. However, the regulatory mechanism of PmMYB21 in mei remains unknown. To breed early-flowering cultivars, a deeper understanding of PmMYB21-regulated genes is essential. We employed DNA affinity purification sequencing (Dap-seq) to identify downstream genes bound by PmMYB21. The results revealed the promoter region is the primary binding region of PmMYB21, and the AGTTAGGTARR motif (motif1) is the predominant binding sequence type. Our analysis identified 8533 genes that are potentially bound by PmMYB21 with the motif1 sequence type, within the promoter region. These genes are involved in biological processes critical to flowering. Further refinement of candidate genes was achieved through Weighted Gene Co-expression Network Analysis (WGCNA), which identified the co-expressed genes of PmMYB21 during flowering activity. Integrating Dap-seq and WGCNA data, we narrowed down the candidate gene list to 54, with a focus on 4 MADS-box genes and 2 hormone signaling genes that are crucial to the flowering process under low-temperature conditions. This study offers valuable insights into the molecular underpinnings of PmMYB21’s role in the low-temperature flowering regulation of mei, paving the way for the development of new cultivars adapted to early blooming.

Funder

China National Botanical Garden

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3