Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada e-mail:
Abstract
Identifying biological analogies is a significant challenge in biomimetic (biologically inspired) design. This paper builds on our previous work on finding biological phenomena in natural-language text. Specifically, a rule-based computational technique is used to identify biological analogies that contain causal relations. Causally related functions describe how one function is enabled by another function, and support the transfer of functional structure from analogies to design solutions. The causal-relation retrieval method uses patterns of syntactic information that represent causally related functions in individual sentences, and scored F-measures of 0.73–0.85. In a user study, novice designers found that of the total search matches, proportionally more of the matches obtained with the causal-relation retrieval method were relevant to design problems than those obtained with a single verb-keyword search. In addition, matches obtained with the causal-relation retrieval method increased the likelihood of using functional association to develop design concepts. Finally, the causal-relation retrieval method enables automatic extraction of biological analogies at the sentence level from a large amount of natural-language sources, which could support other approaches to biologically inspired design that require the identification of interesting biological phenomena.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献