Integrated Product and Process Design for a Flapping Wing Drive Mechanism

Author:

Bejgerowski Wojciech1,Ananthanarayanan Arvind1,Mueller Dominik1,Gupta Satyandra K.2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

2. Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742

Abstract

Successful realization of a flapping wing micro-air vehicle (MAV) requires development of a light weight drive mechanism that can convert the continuous rotary motion of the motor into oscillatory flapping motion of the wings. The drive mechanism should have low weight to maximize the payload and battery capacity. It should also have high power transmission efficiency to maximize the operational range and to minimize weight of the motor. In order to make flapping wing MAVs attractive in search, rescue, and recovery efforts, they should be disposable from the cost point of view. Injection molded compliant drive mechanisms are an attractive design option because of manufacturing scalability and reduction in the number of parts. However, realizing compliant drive mechanism using injection molding requires use of multipiece multigate molds. Molding process constraints need to be considered during the design stage to successfully realize the drive mechanism. This paper describes an approach for determining the drive mechanism shape and size that meets both the design and molding requirements. The novel aspects of this work include (1) minimizing the number of mold pieces and (2) the use of sacrificial shape elements to reduce the impact of the weld-lines on the structural performance. The design generated by the approach described in this paper was utilized to realize an operational flapping wing MAV.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3