Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations

Author:

Egan Paul F.1,Cagan Jonathan2,Schunn Christian3,LeDuc Philip R.4

Affiliation:

1. e-mail:

2. e-mail:  Integrated Design Innovation Group, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

3. Cognitive Program, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213 e-mail:

4. Departments of Mechanical Engineering, Biomedical Engineering, Computational Biology, and Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 e-mail:

Abstract

The process of designing integrated biological systems across scales is difficult, with challenges arising from the modeling, understanding, and search of complex system design spaces. This paper explores these challenges through consideration of how stochastic nanoscale phenomenon relate to higher level systems functioning across many scales. A domain-independent methodology is introduced which uses multi-agent simulations to predict emergent system behavior and structure–behavior–function (SBF) representations to facilitate design space navigation. The methodology is validated through a nanoscale design application of synthetic myosin motor systems. In the multi-agent simulation, myosins are independent computational agents with varied structural inputs that enable differently tuned mechanochemical behaviors. Four synthetic myosins were designed and replicated as agent populations, and their simulated behavior was consistent with empirical studies of individual myosins and the macroscopic performance of myosin-powered muscle contractions. However, in order to configure high performance technologies, designers must effectively reason about simulation inputs and outputs; we find that counter-intuitive relations arise when linking system performance to individual myosin structures. For instance, one myosin population had a lower system force even though more myosins contributed to system-level force. This relationship is elucidated with SBF by considering the distribution of structural states and behaviors in agent populations. For the lower system force population, it is found that although more myosins are producing force, a greater percentage of the population produces negative force. The success of employing SBF for understanding system interactions demonstrates how the methodology may aid designers in complex systems embodiment. The methodology's domain-independence promotes its extendibility to similar complex systems, and in the myosin test case the approach enabled the reduction of a complex physical phenomenon to a design space consisting of only a few critical parameters. The methodology is particularly suited for complex systems with many parts operating stochastically across scales, and should prove invaluable for engineers facing the challenges of biological nanoscale design, where designs with unique properties require novel approaches or useful configurations in nature await discovery.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference57 articles.

1. Foundations for Complex Systems Research in the Physical Sciences and Engineering, Report From an NSF Workshop,2008

2. Explaining a Complex Living System: Dynamics, Multi-Scaling and Emergence;J. R. Soc. Interface,2007

3. Vattam, S., B.Wiltgen, M.Helms, A.Goel, and J.Yen, 2010, “Dane: Fostering Creativity in and Through Biologically Inspired Design,” International Conference on Design Creativity, Kobe, Japan.

4. Motor Proteins at Work for Nanotechnology;Science,2007

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3