Affiliation:
1. U.S. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433
Abstract
The conceptual design of effective actuation mechanisms for flapping wing micro air vehicles presents considerable challenges, with competing weight, power, authority, and life cycle requirements. This work utilizes topology optimization to obtain compliant flapping mechanisms; this is a well-known tool, but the method is rarely extended to incorporate unsteady nonlinear aeroelastic physics, which must be accounted for in the design of flapping wing vehicles. Compliant mechanism topologies are specifically desired to perform two tasks: (1) propulsive thrust generation (symmetric motions of a left and a right wing) and (2) lateral roll moment generation (asymmetric motions). From an optimization standpoint, these two tasks are considered multiple load cases, implemented by scheduling the actuation applied to the mechanism’s design domain. Mechanism topologies obtained with various actuation-scheduling assumptions are provided, along with the resulting flapping wing motions and aerodynamic force/moment generation. Furthermore, it is demonstrated that both load cases may be used simultaneously for future vehicle control studies: gradual transition from forward flight into a turning maneuver, for example.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献