Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time

Author:

Cavarzere Andrea,Venturini Mauro1

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi di Ferrara, Via G. Saragat, 1, 44122 Ferrara, Italy

Abstract

The growing need to increase the competitiveness of industrial systems continuously requires a reduction of maintenance costs, without compromising safe plant operation. Therefore, forecasting the future behavior of a system allows planning maintenance actions and saving costs, because unexpected stops can be avoided. In this paper, four different methodologies are applied to predict gas turbine behavior over time: Linear and Nonlinear Regression, One Parameter Double Exponential Smoothing, Kalman Filter and Bayesian Forecasting Method. The four methodologies are used to provide a prediction of the time when a threshold value will be exceeded in the future, as a function of the current trend of the considered parameter. The application considers different scenarios which may be representative of the trend over time of some significant parameters for gas turbines. Moreover, the Bayesian Forecasting Method, which allows the detection of discontinuities in time series, is also tested for predicting system behavior after two consecutive trends. The results presented in this paper aim to select the most suitable methodology that allows both trending and forecasting as a function of data trend over time, in order to predict time evolution of gas turbine characteristic parameters and to provide an estimate of the occurrence of a failure.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exhaust Temperature Prediction for Gas Turbine Performance Estimation by Using Deep Learning;Journal of Electrical Engineering & Technology;2023-04-26

2. Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data;Journal of Engineering for Gas Turbines and Power;2022-12-08

3. Ensemble Learning Approach to the Prediction of Gas Turbine Trip;Journal of Engineering for Gas Turbines and Power;2022-11-28

4. Performance Prognostics of Gas Turbines Using Nonlinear Filter;Lecture Notes in Mechanical Engineering;2022-10-04

5. Adaptive detection and prediction of performance degradation in off-shore turbomachinery;Applied Energy;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3