Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data

Author:

Losi Enzo1,Venturini Mauro1,Manservigi Lucrezia1,Bechini Giovanni2

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi di Ferrara , Ferrara 44122, Italy

2. Siemens Energy , Munich 81739, Germany

Abstract

Abstract One of the most disrupting events that affect gas turbine (GT) operation is trip, since its occurrence reduces machine life span and also causes business interruption. Thus, early detection of incipient symptoms of GT trip is crucial to ensure efficient operation and save costs. This paper presents a data-driven methodology of which the goal is the disclosure of the onset of trip symptoms by exploring multiple trigger scenarios. For each scenario, a time window of the same length is considered before and after the trigger time point: the former is supposed to be representative of normal operation and is labeled “no trip,” whereas the latter is labeled “trip.” A long short-term memory (LSTM) neural network is first trained for each scenario and subsequently tested on new trips over a timeframe of 3 days of operation before trip occurrence. Finally, trips are clustered into homogeneous groups according to their most likely trigger position, which identifies the time point of onset of trip symptoms. The methodology is applied to two real-world case studies composed of a collection of trips, of which the causes are different, taken from various fleets of GTs in operation. Data collected from multiple sensors are employed and analyzed. The methodology provides the most likely trigger position for four clusters of trips and both case studies with a confidence in the range 66–97%.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven approach for the detection of faults in district heating networks;Sustainable Energy, Grids and Networks;2024-06

2. Methodology to Monitor Early Warnings Before Gas Turbine Trip;Journal of Engineering for Gas Turbines and Power;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3