Methodology to Monitor Early Warnings Before Gas Turbine Trip

Author:

Losi Enzo1,Venturini Mauro1,Manservigi Lucrezia1,Bechini Giovanni2

Affiliation:

1. Department of Engineering, University of Ferrara , Ferrara 44122, Italy

2. Siemens Energy , Milan 20128, Italy

Abstract

Abstract The current energy scenario requires that gas turbines (GTs) operate at their maximum efficiency and highest reliability. Trip is one of the most disrupting events that reduces GT availability and increases maintenance costs. To tackle the challenge of GT trip prediction, this paper presents a methodology that has the goal of monitoring the early warnings raised during GT operation and trigger an alert to avoid trip occurrence. The methodology makes use of an auto-encoder (prediction model) and a three-stage criterion (detection procedure). The auto-encoder is first trained to reconstruct safe operation data and subsequently tested on new data collected before trip occurrence. The trip detection criterion checks whether the individually tested data points should be classified as normal or anomalous (first stage), provides a warning if the anomaly score over a given time frame exceeds a threshold (second stage), and, finally, combines consecutive warnings to trigger a trip alert in advance (third stage). The methodology is applied to a real-world case study composed of a collection of trips, of which the causes may be different, gathered from various GTs in operation during several years. Historical observations of gas path measurements taken during three days of GT operation before trip occurrence are employed for the analysis. Once optimally tuned, the methodology provides a trip alert with a reliability equal to 75% at least 10 h in advance before trip occurrence.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3