A Comprehensive Approach for Detection, Classification, and Integrated Diagnostics of Gas Turbine Sensors

Author:

Fabio Ceschini Giuseppe1,Gatta Nicolò2,Venturini Mauro2,Hubauer Thomas1,Murarasu Alin1

Affiliation:

1. Siemens AG, Nürnberg 90461, Germany

2. Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara 44122, Italy

Abstract

Anomaly detection in sensor time series is a crucial aspect for raw data cleaning in gas turbine (GT) industry. In addition to efficiency, a successful methodology for industrial applications should be also characterized by ease of implementation and operation. To this purpose, a comprehensive and straightforward approach for detection, classification, and integrated diagnostics of gas turbine sensors (named DCIDS) is proposed in this paper. The tool consists of two main algorithms, i.e., the anomaly detection algorithm (ADA) and the anomaly classification algorithm (ACA). The ADA identifies anomalies according to three different levels of filtering based on gross physics threshold application, intersensor statistical analysis (sensor voting), and single-sensor statistical analysis. Anomalies in the time series are identified by the ADA, together with their characteristics, which are analyzed by the ACA to perform their classification. Fault classes discriminate among anomalies according to their time correlation, magnitude, and number of sensors in which an anomaly is contemporarily identified. Results of anomaly identification and classification can subsequently be used for sensor diagnostic purposes. The performance of the tool is assessed in this paper by analyzing two temperature time series with redundant sensors taken on a Siemens GT in operation. The results show that the DCIDS is able to identify and classify different types of anomalies. In particular, in the first dataset, two severely incoherent sensors are identified and their anomalies are correctly classified. In the second dataset, the DCIDS tool proves to be capable of identifying and classifying clustered spikes of different magnitudes.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3