Ensemble Learning Approach to the Prediction of Gas Turbine Trip

Author:

Losi Enzo1,Venturini Mauro1,Manservigi Lucrezia1,Bechini Giovanni2

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi di Ferrara , Ferrara 44122, Italy

2. Siemens Energy , Munich 81739, Germany

Abstract

Abstract In the field of gas turbine (GT) monitoring and diagnostics, GT trip is of great concern for manufactures and users. In fact, due to the number of issues that may cause a trip, its occurrence is not infrequent, and its prediction is a quite unexplored field of research. This is demonstrated by the fact that, despite its relevance, a comprehensive study on the reliability of predicting GT trip has not been proposed yet. To fill this gap, this paper investigates the fusion of five data-driven base models by means of voting and stacking, in order to improve prediction accuracy and robustness. The five benchmark supervised machine learning and deep learning classifiers are k-nearest neighbors, support vector machine (SVM), Naïve Bayes (NB), decision trees (DTs), and long short-term memory (LSTM) neural networks. While voting just averages the predictions of base models, without providing additional pieces of information, stacking is a technique used to aggregate heterogeneous models by training an additional machine learning model (namely, stacked ensemble model) on the predictions of the base models. The analyses carried out in this paper employ filed observations of both safe operation and trip events, derived from a large fleet of industrial Siemens GTs in operation. The results demonstrate that the stacked model provides higher accuracy than base models and also outperforms voting by proving more effective, especially when the reliability of the prediction of base models is poor.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology to Monitor Early Warnings Before Gas Turbine Trip;Journal of Engineering for Gas Turbines and Power;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3