Turbofan Performance Deterioration Tracking Using Nonlinear Models and Optimization Techniques

Author:

Mathioudakis K.1,Kamboukos Ph.1,Stamatis A.1

Affiliation:

1. Laboratory of Thermal Turbomachines, National Technical University of Athens, Athens 15710, Greece

Abstract

A method of identifying the gradual deterioration in the components of jet engines is presented. It is based on the use of an engine model which has the capability to adapt component condition parameters, so that measured quantities are matched. The main feature of the method is that it gives the possibility to identify performance deviations in a number of parameters larger than the number of measured quantities. This is achieved by optimizing a cost function which incorporates not only measurement matching terms, but also terms expressing various constraints resulting from the physical knowledge of the deterioration process. Time series of data representing deterioration scenarios are used to demonstrate the method’s capabilities. The test case considered is a twin spool partially mixed turbofan, representative of present-day large civil aeroengines. Implementation aspects, related to both the measurement set and the identification algorithms are discussed. An interpretation of the output of the method in function of different parameters entering the diagnostic problem is presented.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3