A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities

Author:

Fentaye ,Baheta ,Gilani ,Kyprianidis

Abstract

Gas-path diagnostics is an essential part of gas turbine (GT) condition-based maintenance (CBM). There exists extensive literature on GT gas-path diagnostics and a variety of methods have been introduced. The fundamental limitations of the conventional methods such as the inability to deal with the nonlinear engine behavior, measurement uncertainty, simultaneous faults, and the limited number of sensors available remain the driving force for exploring more advanced techniques. This review aims to provide a critical survey of the existing literature produced in the area over the past few decades. In the first section, the issue of GT degradation is addressed, aiming to identify the type of physical faults that degrade a gas turbine performance, which gas-path faults contribute more significantly to the overall performance loss, and which specific components often encounter these faults. A brief overview is then given about the inconsistencies in the literature on gas-path diagnostics followed by a discussion of the various challenges against successful gas-path diagnostics and the major desirable characteristics that an advanced fault diagnostic technique should ideally possess. At this point, the available fault diagnostic methods are thoroughly reviewed, and their strengths and weaknesses summarized. Artificial intelligence (AI) based and hybrid diagnostic methods have received a great deal of attention due to their promising potentials to address the above-mentioned limitations along with providing accurate diagnostic results. Moreover, the available validation techniques that system developers used in the past to evaluate the performance of their proposed diagnostic algorithms are discussed. Finally, concluding remarks and recommendations for further investigations are provided.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference224 articles.

1. Airline Maintenance Cost: Executive Commentaryhttp://www.iata.org/workgroups/Documents/MCTF/AMC_ExecComment_FY09.pdf

2. Global Outsourcing of Aircraft Maintenance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3