Gas path diagnosis method for gas turbine fusing performance analysis models and extreme learning machine

Author:

Li Shiyao1,Li Zhenlin2,Zhang Meng1,Han Song1

Affiliation:

1. PipeChina Beijing Pipeline Co., Ltd., Beijing, China

2. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing, China

Abstract

The gas path analysis, which can quantify the performance degradation of gas turbine components, has been extensively applied to the gas path diagnosis. However, the precondition of this method is that the number of measurable parameters for the gas turbine to be diagnosed should not be less than the number of its health factors. In the existing research, this precondition can be guaranteed through common approaches such as screening the degraded components by a model-based prediagnosis process or recognizing the degraded components by using tools such as an ANN or a support vector machine. However, the diagnosis speed, recognition accuracy, and robustness of these approaches need to be improved. Therefore, a diagnosis method fusing the gas path performance analysis model and the extreme learning machine was proposed in this paper and applied to a GE LM2500+SAC gas turbine. The working mechanism of similarity ranking-gas path diagnosis-rationality check was introduced in the fusion method, endowing it with a higher recognition accuracy rate, stronger robustness, and higher diagnostic accuracy.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3