Three-spool turbofan pass-off test data analysis using an optimization-based diagnostic technique

Author:

Saias Chana Anna1ORCID,Pellegrini Alvise1,Brown Stephen1,Pachidis Vassilios1

Affiliation:

1. Propulsion Engineering Centre, School of Aerospace Transport and Manufacturing, Cranfield University, Bedfordshire, UK

Abstract

Production engine pass-off testing is a compulsory technique adopted to ensure that each engine meets the required performance criteria before entering into service. Gas turbine performance analysis greatly supports this process and substantial economic benefits can be achieved if an effective and efficient analysis is attained. This paper presents the use of an integrated method to enable engine health assessment using real pass-off test data of production engines obtained over a year. The proposed method is based on a well-established diagnostic technique enhanced for a highly-complex problem of a three-spool turbofan engine. It makes use of a modified optimization algorithm for the evaluation of the overall engine performance in the presence of component degradation, as well as, sensor noise and bias. The developed method is validated using simulated data extracted from a representative adapted engine performance model. The results demonstrate that the method is successful for 82% of the fault scenarios considered. Next, the pass-off test data are analyzed in two stages. Initially, correlation and trend analyses are conducted using the available measurements to obtain diagnostic information from the raw data. Subsequently, the method is utilized to predict the condition of 264 production turbofan engines undergoing a compulsory pass-off test.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3