Fluid-Structure Interaction Analysis on the Performance of the High-Pressure Fuel Pump for Diesel Engines

Author:

Qian Dexing1,Liao Ridong1,Xiang Jianhua1,Sun Baigang1,Wang Shangyong1

Affiliation:

1. Beijing Institute of Technology, Beijing, China

Abstract

In this paper, a 3-D fluid-structure interaction (FSI) analysis on the performance of the high-pressure fuel pump for diesel engines is presented. The fluid and structure are two-way coupled and several complex factors are taken into accounts in the FSI model. For instance, the fluid model includes not only the high-pressure fuel pump but also the rail and pressure-control valve which are used to maintain a stable delivery pressure of the pump; Gap boundary condition is adopted to simulate the opening and closing of the valve; The flow is assumed to be nonisothermal and the physical properties of the fuel such as dynamic viscosity and density are functions of pressure and temperature. While in the structure model, the spring force on the valve and the contacts between the valve and the valve seat as well as the top block are considered. The calculated volumetric efficiency losses agree well with the experiments, which indicates that the FSI model established in this study could well predict the physical phenomenon taking place in the high-pressure fuel pump. Several new conclusions can be drawn from the discussions on the results such as the suction efficiency loss due to the delay closing of the inlet valve is extremely small while the suction loss due to the expansion of the high-pressure fuel entrapped in the dead volume is very large.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DIRECT FUEL SUPPLY SYSTEM WITH ELECTRONICALLY CONTROLLED RING VALVE;Vestnik of Kazan State Agrarian University;2022-04-23

2. DIRECT FUEL SUPPLY SYSTEM WITH ELECTRONICALLY CONTROLLED RING VALVE;Vestnik of Kazan State Agrarian University;2022-04-20

3. DIESEL INJECTOR PUMP WITH RING CONTROL VALVE;Vestnik of Kazan State Agrarian University;2020-05-21

4. DIESEL INJECTOR PUMP WITH RING CONTROL VALVE;Vestnik of Kazan State Agrarian University;2020-05-14

5. Theoretical and experimental study of a hydraulically actuated diesel pump-injector unit with electronically controlled ring valve;FME Transactions;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3