A Rainbow Piezoelectric Energy Harvesting System for Intelligent Tire Monitoring Applications

Author:

Esmaeeli Roja1,Aliniagerdroudbari Haniph1,Hashemi Seyed Reza1,Nazari Ashkan1,Alhadri Muapper1,Zakri Waleed1,Mohammed Abdul Haq1,Batur Celal2,Farhad Siamak2

Affiliation:

1. Advanced Energy & Sensor Lab, Mechanical Engineering Department, ASEC 101, The University of Akron, Akron, OH 44325-3903 e-mail:

2. Mechanical Engineering Department, Advanced Energy & Sensor Lab, ASEC 101, The University of Akron, Akron, OH 44325-3903 e-mail:

Abstract

Intelligent tires can be used in autonomous vehicles to insure the vehicle safety by monitoring the tire and tire-road conditions using sensors embedded on the tire. These sensors and their wireless communication systems need to be powered by energy sources such as batteries or energy harvesters. The deflection of tires during rotation is an available and reliable source of energy for electric power generation using piezoelectric energy harvesters to feed tire self-powered sensors and their wireless communication systems. The aim of this study is to design, analyze, and optimize a rainbow-shaped piezoelectric energy harvester mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required for monitoring intelligent tires. It is shown that the designed piezoelectric energy harvester can generate sufficient voltage, power, and energy required for a tire pressure monitoring system (TPMS) with high data transmission speed or three TPMSs with average data transmission speed. The effect of the vehicle speed on the voltage and electric energy generated by the designed piezoelectric is also studied. The geometry and the circuit load resistance of the piezoelectric energy harvester are optimized in order to increase the energy harvesting efficiency. It is shown that the optimized rainbow piezoelectric energy harvester can reach the highest power generation among all the strain-based energy harvesters that partially cover the inner layer of the tire.

Funder

National Science Foundation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3