Structural optimization of laminated leaf-like piezoelectric wind energy harvesters based on topological method

Author:

Wang Mingming1,Wang Weiyuan1ORCID,Li Qiuhong1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China

Abstract

In this paper, a series of leaf-like piezoelectric elements are proposed by using laminated structure of polypropylene (PP) and Polyvinylidene fluoride (PVDF) film to collect wind energy through vortex induced vibration. Topology optimization based on solid isotropic material with penalization method is employed in seeking optimal configurations of the elements. The PP and PVDF layer were set as optimization variables respectively to obtain topological layouts that would be equivalent to maximizes the overall strain energy as the objective function. Four simple shapes of piezoelectric elements with different topological configurations are manufactured and tested in wind tunnel to estimate the energy harvesting capabilities. The experimental results show that the reinforcement optimized long trapezoid model has the highest open-circuit output voltage of 4.01 V and output power of 6.125 μW at the wind speed of 12 m/s. For the optimization of piezoelectric materials, the short trapezoid model can reach the open circuit output voltage of 2.061 V and output power of 1.158 μW. It indicated that the topology optimization can indeed improve the energy harvesting efficiency of the piezoelectric element. However, this method is not universal at present, which means that the external shape of the model will influence the performance of the relevant optimization results.

Funder

Central University Basic Research Fund of China

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3