Diesel Engine Optimization for Electric Hybrid Vehicles

Author:

Yusaf Talal F.1

Affiliation:

1. FOES, University of Southern Queensland, Toowoomba 4350 QLD, Australia

Abstract

Performance and emission testing for a single cylinder four-stroke diesel engine have been experimentally performed to determine the optimum operation conditions for this engine when it is used as a hybrid power unit. The studied operation parameters included brake specific fuel consumption (BSFC), exhaust emission (NOx, CO, CO2, and O2), and engine life. The results indicate that the lowest BSFC of the engine was found when the engine runs around 1 kW charging load at speed ranged between 1900 rpm and 2700 rpm. As the speed of the engine is maintained constant, the minimum level of BSFC is below 300 g/kW h at around 1900 rpm. The best engine operation conditions, for low emission, are found at engine speed around 2500 rpm. It was found that the oxides of nitrogen remain within the acceptable level (below 180 ppm) for such a diesel engine. The battery charge has been conducted at constant speeds, where the lubricant oil temperature was constant and always below maximum temperature; this is a good indication for longer engine life.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference13 articles.

1. Kost, R. , 1999, “DOE Hybrid Electric Vehicle Program. Why HEVa?” Publication of the U.S. Department of Energy, Washington, DC, July.

2. Hybrid Engines and Power Plants Concepts for Space Objects;Kurkin

3. Technologies for Electric, Hybrid and Hydrogen Vehicles: Electricity From Renewable Energy Sources in Transport;Jorgensen;Utilities Policy

4. Stirling Engines for Hybrid Electric Vehicle Applications;Ernest

5. Sullivan, R. A. , 1999, “The Technical Background of Hybrid Electric Vehicles,” Publication of the U.S. Department of Energy, Washington, DC, Jul.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3