Dynamic Stiffness Matrix With Timoshenko Beam Theory and Linear Frequency Solution for Use in Compliant Mechanisms

Author:

Ling Mingxiang1,Zhou Hao2,Chen Liguo3

Affiliation:

1. Southwest Jiaotong University Institute of Smart City and Intelligent Transportation, , No. 999, Xi’an Road, Chengdu 610097 , China

2. Beijing Institute of Technology State Key Laboratory of Explosion Science and Technology, , No. 55 Zhongguancun South Road, Haidian District, Beijing 100010 , China

3. Soochow University School of Mechanical and Electric Engineering, , No. 8, Jixue Road, Suzhou 215123 , China

Abstract

Abstract The kinetostatic and dynamic formulation of planar-compliant mechanisms is investigated by making use of the dynamic stiffness method based on Timoshenko beam theory. This research is prompted by the significance of considering both the shear deformation and rotary inertia for short and thick flexure beams widely used in compliant mechanisms. We investigate the problem by developing the frequency-dependent dynamic stiffness matrix with the pseudo-static characteristic for a threefold purpose. The first is to show that a closed-form dynamic stiffness matrix of flexure beams in power series of frequency including the shear deformation and rotary inertia is effective that is parameter-insightful and from a computational standpoint concise. Second, a programmable stiffness and mass assembling procedure is developed to build the kinetostatic and dynamic model for compliant mechanisms in a general sense. The third target is to accelerate the calculation efficiency of dynamic stiffness model by employing a linear solution strategy of natural frequencies which is beneficial for parameter optimization iteration. The presented approach is demonstrated by applying the parameter influence analysis and dimension synthesis of a bridge-type compliant mechanism widely used in micro-displacement and/or force amplifications

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3