Abstract
Abstract
Piezoelectric stacks have proved to be effective for micro/nano motion actuators with large blocking forces. A critical problem is to build their electro-mechanical model for systematic design of statics and dynamics including piezoelectric hysteresis and elasto-kinematics of compliant mechanisms. To ease this issue, this paper proposes a new electro-mechanical dynamic stiffness matrix of piezoelectric stacks to enable a systematic analysis. Positive and inverse piezoelectric effects are included into the dynamic stiffness matrix of Timoshenko beams in the form of Taylor’s series with a clear definition of physical parameters. Consequently, the Jacobian matrix, input/output stiffness, natural frequencies, frequency-domain spectrums of mechanical displacement and electrical impedance as well as the time-domain response of piezoelectric hysteresis can be fully obtained with a single modeling process. Particularly, the time-domain response in the presence of piezoelectric rate-dependent hysteresis and dynamic resonance behaviors of compliant mechanisms is captured in a parameter-insightful way but not the manner in Hammerstein hysteresis model with a black-box transfer function. Experiments on a proof-of-concept prototype of precision positioning stage verify the easy operation and satisfying prediction accuracy of the presented approach.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing