A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots

Author:

Howell L. L.1,Midha A.1

Affiliation:

1. Elastic Mechanisms Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Compliant or flexible-link mechanisms gain some or all of their motion from the relative flexibility of their joints rather than from rigid-body joints only. Unlike rigid-body mechanisms, energy is not conserved between the input and output ports of compliant mechanisms because of energy storage in the flexible members. This effect and the nonlinearities introduced by large deflections complicate the analysis of such mechanisms. The design of compliant mechanisms in industry is currently accomplished by expensive trial and error methods. This paper introduces a method to aid in the design of a class of compliant mechanisms wherein the flexible sections (flexural pivots) are small in length compared to the relatively rigid sections. The method includes a definition and use of a pseudo-rigid-body model, and the use of a large-deflection finite element type algorithm. An example is used to illustrate the design technique described.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 303 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3