A Geometric Approach to Obtain the Closed-Form Forward Kinematics of H4 Parallel Robot

Author:

Liu Yujiong1,Kong Minxiu2,Wan Neng3,Ben-Tzvi Pinhas

Affiliation:

1. Robotics and Mechatronics Laboratory,Department of Mechanical Engineering,Virginia Polytechnic Instituteand State University,Blacksburg, VA 24060e-mail: yjliu@vt.edu

2. Robotics Institute School ofMechatronics Engineering,Harbin Institute of Technology,Harbin 150001, Chinae-mail: exk@hit.edu.cn

3. Advanced Controls Research Laboratory,Department of Mechanical Scienceand Engineering,University of Illinois at Urbana-Champaign,Urbana, IL 61801e-mail: nengwan2@illinois.edu

Abstract

Abstract To obtain the closed-form forward kinematics of parallel robots, researchers use algebra-based method to transform and simplify the constraint equations. However, this method requires a complicated derivation that leads to high-order univariate variable equations. In fact, some particular mechanisms, such as Delta, or H4 possess many invariant geometric properties during movement. This suggests that one might be able to transform and reduce the problem using geometric approaches. Therefore, a simpler and more efficient solution might be found. Based on this idea, we developed a new geometric approach called geometric forward kinematics (GFK) to obtain the closed-form solutions of H4 forward kinematics in this paper. The result shows that the forward kinematics of H4 yields an eighth degree univariate polynomial, compared with earlier reported 16th degree. Thanks to its clear physical meaning, an intensive discussion about the solutions is presented. Results indicate that a general H4 robot can have up to eight nonrepeated real solutions for its forward kinematics. For a specific configuration of H4, the nonrepeated number of real roots could be restricted to only two, four, or six. Two traveling plate configurations are discussed in this paper as two typical categories of H4. A numerical analysis was also performed for this new method.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3