Statistical Characteristics of Fatigue Failure of Copper Thin Films

Author:

Jang Jae-Won1,Hwangbo Yun2,Kim Jae-Hyun,Lee Hak-Joo,Mag-isa Alexander E.3,Lee Soon-Bok1

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea

2. e-mail:

3. Department of Nano Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 104, Sinseongno, Yuseong-gu, Daejeon 305-343, South Korea

Abstract

Tension–tension fatigue tests were conducted on an electrodeposited copper film with a thickness of 12 μm under four levels of maximum stress and two levels of mean stress. Statistical characteristics of the measured fatigue lives were analyzed using three estimation methods for cumulative distribution function and five probability distributions in order to identify the dominant probability distribution for the fatigue life of copper film. It was found that while the 3-parameter Weibull distribution provided the best fit for the measured data in most cases, the other distributions also provide a similar coefficient of correlation for the fit. The absence of the dominant probability distribution was discussed with considerations of the deformation mode and the scanning electron microscope (SEM) measurements of fatigue-fractured surfaces. Based on the statistical analysis, the probabilistic stress-life (PSN) curves were obtained for statistical prediction of fatigue life of the copper film in the intermediate life regime.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Dropper Stress in a Catenary System for a High-Speed Railway;Mathematical Problems in Engineering;2022-09-01

2. Structure-dependent mechanical behavior of copper thin films;Materials Characterization;2017-06

3. Fatigue of thin-walled tubes in copper alloy CuNi10;Ships and Offshore Structures;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3