A Universal Pocket Plunge Milling Method to Decrease the Maximum Engagement Angle

Author:

Huang Nuodi12,Krebs Eugen3,Baumann Jonas3,Wirtz Andreas3,Jaeger Eva Maria3,Biermann Dirk3

Affiliation:

1. State Key Laboratory of Mechanical, System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;

2. State Key Laboratory of Digital Manufacturing and Equipment Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. Institute of Machining Technology, TU Dortmund University, Dortmund 44227, Germany

Abstract

Abstract Plunge milling has been proven to be an efficient strategy for machining of pockets with deep cavities and difficult-to-cut material. Previous work generates the plunge toolpath mainly by controlling the radial cutting width within the given value. However, uneven tool engagement angles may lead to excessive tool load and tool load fluctuations, which has a negative influence on tool life. In this study, a universal plunge milling toolpath generation method is proposed to improve tool life by decreasing the maximum tool engagement angle. A series of concentric circles with constant radius increment is utilized to generate a toolpath with constant cutting radial depth. Center of the concentric circle is determined based on the pocket contour. New detailed algorithms to generate plunge toolpath for basic cases have been developed. An automatic pocket subdivision algorithm has been developed by dividing the pocket into several subregions that are easy to be machined. Without loss of generality, the method is applicable for both open and closed pockets. It also works for pockets with and without islands inside. The method is implemented and verified successfully by machining experiments. The results provide strong evidence that the proposed method can reduce the maximum engagement angle over the entire toolpath and thus improve the tool life.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3