Abstract
Milling processes are often limited by self-excited vibrations of the tool or workpiece, generated by the regenerative effect, especially when using long cantilevered tools or machining thin-walled workpieces. The regenerative effect arises from a periodic modulation of the uncut chip thickness within the frequencies of the eigenmodes, which results in a critical excitation in the consecutive cuts or tooth engagements. This paper presents a new approach for disturbing the regenerative effect by using milling tools which are modified with asymmetric dynamic properties. A four-fluted milling tool was modified with parallel slots in the tool shank in order to establish asymmetric dynamic characteristics or different eigenfrequencies for consecutive tooth engagements, respectively. Measurements of the frequency response functions at the tool tip showed a decrease in the eigenfrequencies as well as an increase in the dynamic compliance in the direction of the grooves. Milling experiments with a constant width of cut and constantly increasing axial depth of cut indicated a significant increase in the stability limit for the specific preparations of up to 69%.
Funder
Deutsche Forschungsgemeinschaft
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献