Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces

Author:

Wang Jiarui1,Luo Ming2,Xu Ke3,Tang Kai4

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, China, Hong Kong

2. Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

3. College of Mechanical and Electronic Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

4. Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong e-mail:

Abstract

Short tool service life is always a major concern when milling hard materials, such as Ni-based superalloy. In the current research of tool life optimization in multi-axis machining of freeform surfaces, the focus is mostly on choosing suitable cutting parameters and better application of coolant. In this paper, aiming at averaging the tool wear on the entire cutting edge and hence prolonging the tool service life, we report a study on how to generate a multilayer toolpath with a varying tool lead angle for multi-axis milling of an arbitrary freeform surface from an initial raw stock. The generated toolpath is guaranteed to be free of chatter, which is well known for its detrimental effect on the cutting edge. In this study, we first experimentally construct the chatter stability lobe diagram, which reveals the relationship between the lead angle and the cutting depth. With the chatter stability lobe diagram as the major constraint, we then generate the machining toolpath by selecting a proper pair of the best lead angle and cutting depth along the toolpath. While the proposed algorithm currently is restricted to the iso-planar type of toolpath, it can be adapted to other types of milling. The physical cutting experiments performed by us have convincingly confirmed the advantage of the proposed machining strategy as compared to the conventional constant lead angle and constant cutting depth strategy—in our tests the maximum wear on the cutting edge is reduced by as much as 39%.

Funder

National Natural Science Foundation of China

Research Grants Council, University Grants Committee

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3