Rigidity Regulation Approach for Geometric Tolerance Optimization in End Milling of Thin-Walled Components

Author:

Agarwal Ankit1,Desai K. A.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India

Abstract

Abstract This article presents a novel approach to optimize geometric tolerances (flatness and cylindricity) by manipulating the rigidity among finishing and roughing cutting sequences during end milling of thin-walled components. The proposed approach considers the design configuration of the thin-walled component as an input and aims to determine semi-finished geometry such that the geometric tolerance parameters are optimized while performing a finish cutting sequence. The objective is accomplished by combining mechanistic force model, finite element (FE) analysis-based workpiece deflection model, and particle swarm optimization (PSO) technique to determine optimal disposition of material along the length of component thereby regulating rigidity. The algorithm has been validated by determining the rigidity-regulated semi-finished geometries for thin-walled components having straight, concave, and convex configurations. The outcomes of the proposed algorithm are substantiated further by conducting a set of end milling experiments for each of these cases. The results of the proposed strategy are compared with a traditional approach considering no change in the rigidity of component along length of the cut. It is demonstrated that the proposed approach can effectively optimize geometric tolerances for thin-walled components during end milling operation.

Funder

Ministry of Education

Science and Engineering Research Board

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

1. Process-Guided Coordinate Sampling of End-Milled Flat Plates;Obeidat;Int. J. Adv. Manuf. Technol.,2011

2. Experimental Investigation and Prediction of Flatness and Surface Roughness During Face Milling Operation of WCB Material;Sheth;Procedia Technol.,2016

3. Investigation of Flatness and Angularity in Case of Ball-End Milling;Mikó,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3