Affiliation:
1. School of Engineering, University of Durham, Durham DH1 3LE, UK
Abstract
One of the outstanding issues in turbomachinery aeromechanic analysis is the intrarow interaction effects. The present work is aimed at a systematic examination of rotor-stator gap effects on blade aerodynamic damping by using a three-dimensional (3D) time-domain single-passage Navier-Stokes solver. The method is based on the upwind finite volume discretization and the single-passage shape-correction approach with enhanced accuracy and efficiency for unsteady transonic flows prediction. A significant speedup (by a factor of 20) over to a conventional whole annulus solution has been achieved. A parametric study with different rotor-stator gaps (56%–216% rotor tip chord) for a 3D transonic compressor stage illustrates that the reflection from an adjacent stator row can change rotor aerodynamic damping by up to 100% depending on the intrarow gap spacing. Furthermore, this rotor aerodamping dependency on the intrarow gap seems also to be affected by the number of stator blades. The predicted nonmonotonic relationship between the rotor blade aerodynamic damping and the gap spacing suggests the existence of an optimum gap regarding rotor flutter stability and/or forced response stress levels.
Reference15 articles.
1. Marshall, J. G., and Imregun, M., 1996, “An Analysis of the Aeroelastic Behavior of a Typical Fan-Blade With Emphasis on the Flutter Mechanism,” ASME Paper No. 96-GT-78.
2. Doi, M., and Alonso, J. J., 2002, “Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery,” ASME Paper No. GT-2002-30313.
3. A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery;Silkowski;ASME J. Turbomach.
4. Casing Boundary Layers in Multistage Compressors;Smith
5. Adamczyk, J. J. , 1998, “Wake Mixing in Axial Flow Compressors,” ASME Paper No. 98-GT-29.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献