An Analysis of the Aeroelastic Behaviour of a Typical Fan-Blade With Emphasis on the Flutter Mechanism

Author:

Marshall J. G.1,Imregun M.2

Affiliation:

1. Rolls-Royce plc., Derby, UK

2. Imperial College of Science, Technology & Medicine, London, UK

Abstract

Aeroelasticity phenomena are characterised by the interaction of fluid and structural domains, whose describing equations are nonlinear. Classical prediction methods are generally based on treating the two domains separately while integrated (or coupled) approaches link them via boundary conditions throughout the solution phase. In turbomachinery environments, the aeroelasticity problem is further compounded by the fact that blades vibrate with a relative phase with respect to each other, the value of which is not necessarily known. Using a 3D thin-layer Reynolds-averaged Navier-Stokes solver and a 3D structural model, various coupled and uncoupled flutter analysis methods are compared with particular emphasis on inter-blade phase angle. A typical fan geometry, the NASA Rotor 67 blade, was chosen as the test case since steady-flow measurements are available for this particular structure. Two flow conditions, near peak-efficiency and near stall, were investigated for inter-blade phase angles of −90°, 0°, 90° & 180°. The performance of the uncoupled analysis with shape correction was first compared with that of the uncoupled multi-passage analysis. A coupled multi-passage analysis was performed next in order to highlight the importance of fluid/structure interaction. It was found that significant natural frequency shifts could exist between the structural and aeroelastic modes of the system, which suggests that coupled analyses may be more appropriate for such cases.

Publisher

American Society of Mechanical Engineers

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3