Analyzing Unsteady Turbomachinery Flow Simulations With Mixing Entropy

Author:

Frey Christian1,Geihe Benedict1,Junge Laura1

Affiliation:

1. German Aerospace Center (DLR) Institute of Propulsion Technology, , Linder Höhe, Cologne 51147 , Germany

Abstract

Abstract The prediction of unsteady aerodynamic loads is a central problem during the design of turbomachinery. Over the last 20 years, harmonic balance methods have been shown to be highly efficient for this task. A CPU-cost optimal setup of a harmonic balance simulation, however, requires knowledge of relevant harmonics. In the case of a single blade row with a periodic disturbance this question amounts to the classical problem of harmonic convergence, a problem which is solely due to the nonlinearity of the unsteady flow physics. In contrast, for multi-stage configurations, the choice of harmonics is further complicated by the fact that the interactions of disturbances with blade rows may give rise to a vast spectrum of harmonics that possibly have important modal content, e.g., Tyler–Sofrin modes. The aim of this paper is to show that the mixing entropy attributed to circumferential modes of a given harmonic can serve as a disturbance metric on the basis of which a criterion could be derived whether a certain harmonic should be included or not. The idea is based on the observation that the entropy due to the temporal and circumferential mixing of the flow at a blade row interface may be decomposed, up to third-order terms, into independent contributions from different frequencies and mode orders. For a given harmonic balance (and steady) flow result, the mixing entropy attributed to modes that are simply mixed out, rather than resolved in the neighboring row, is shown to be a natural indicator of a potential inaccuracy. We present important features of the mixing entropy for unsteady disturbances, in particular a close relationship to sound power for acoustic modes. The problem of mode selection in a 1.5-stage compressor configuration serves as a practical example to illustrate our findings.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3