Could Shock Tests Adequately Mimic Drop Test Conditions?

Author:

Suhir E.12

Affiliation:

1. Iolon, Inc., San Jose, CA 95131

2. University of Illinois, Chicago, Il 60607

Abstract

Drop tests are often substituted in qualification or life testing of microelectronic and optoelectronic products by shock tests. The existing (e.g., Telcordia) qualification specifications require that a short term load of the given magnitude and duration (say, an “external” acceleration with the maximum value of 500 g, acting for 0.001 s) is applied to the support structure of the product under test. The natural frequencies of vibration are not taken into account. The objective of our study is to develop simple analytical (“mathematical”) predictive models for the evaluation of the dynamic response of a structural element in a microelectronic or an optoelectronic product/package to an impact load occurring as a result of drop or shock tests. We use the developed models to find out if a shock tester could be “tuned” in such a way that the shock tests adequately mimic drop test conditions. We suggest that the maximum induced curvature and the maximum induced acceleration be used as suitable characteristics of the dynamic response of a structural element to an impact load. Indeed, the maximum curvatures determine the level of the bending stresses, and the maximum accelerations are supposedly responsible for the functional (electronic or photonic) performance of the product. We use the case of an elongated rectangular simply supported plate as an illustration of the suggested concept. We show that in order to adequately mimic drop test conditions, the shock test loading should be as close as possible to an instantaneous impulse, and that the duration of the shock load should be established based on the lowest (fundamental) natural frequency of vibrations. We show also that, for practical purposes, it is sufficient to consider the fundamental mode of vibrations only, and that the shock load does not have to be shorter than, say, half the quarter of the fundamental period. We demonstrate that, if the loading is not short enough, the induced curvatures and accelerations can exceed significantly the curvatures and accelerations in drop test conditions. Certainly, the results of such shock tests will be misleading. After the appropriate duration of the shock impulse is established, the time dependence and the maximum value of the imposed (“external”) acceleration in shock tests should be determined, depending on the most likely drop height, in order to adequately mimic drop test conditions. We demonstrate that the application of a probabilistic approach can be helpful in understanding the mechanical behavior and to ensure high short- and long-term reliability of an electronic or photonic device that might be or will be subjected to an accidental or expected impact loading. We conclude that although it is possible to “tune” the shock tester, so that the drop test conditions are adequately reproduced, actual drop tests should be conducted, whenever possible. The results of the analysis can be helpful in physical design and qualification testing of microelectronic and photonic products, experiencing dynamic loads of short duration.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference7 articles.

1. D. S. Steinberg, 1988, Vibration Analysis of Electronic Equipment, 2nd ed., Wiley.

2. Military Handbook, MIL-HDBK-SE.

3. S. P. Timoshenko and D. J. Young, 1955, Vibration Problems in Engineering, 3rd ed., Van Nostrand, Princeton, N.J.

4. S. P. Timoshenko and S. Woinowski-Krieger, 1940, Theory of Plates and Shells, McGraw-Hill, NY.

5. J. P. Den-Hartog, 1956, Mechanical Vibrations, 4th ed., McGraw-Hill, NY.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3