Optimal Shock Pulse in a Drop Test Simulation of Standardized Board for Uniform Shock Response

Author:

Kallolimath Sharan1,Zhou Jiang Jenny2

Affiliation:

1. Department of Mechanical Engineering, Lamar University, 4400 MLK Drive, Beaumont, TX 77705 e-mail:

2. Professor Department of Mechanical Engineering, Lamar University, 4400 MLK Drive, Beaumont, TX 77705 e-mail:

Abstract

Board-level physical test performance of CSP/BGA packages need in depth characterization of loading parameters and material behavioral properties. In recent years, many calibration methods were adopted by the researchers and industries to improvise solder joint performances of packages. Effective and uniform board response is one of the critical challenges in developing test board to qualify package components for solder joint reliability qualification. In this paper, an improvised board type alternative to standard Joint Electron Device Engineering Council (JEDEC) board is developed for uniform stress/strain response. An axis symmetrical board is chosen in comparison to the current JEDEC board. The effectiveness of the two boards are compared with each other under extreme banding under controlled drop test simulation. The uniform stress–stain distribution is recorded maintaining the no-ring phenomenon by selecting optimal shock pulse parameters. Selected impact/shock pulse is decided by identifying the maximum impact energy absorbed by the board during the drop event. Board surface strain and stress data are captured 1–2 mm away near the components are quantified for higher strain rate. The board local strain rate on the board surface is recorded at a selected time-step to quantify the dynamic stresses along the component side surface on the board. The simulation is performed by using ANSYS software using implicit method. Both linear SOLID45 and quadratic SOLID95 elements are used to compare and correlate the results. Close forms of results were correlated with the previous theoretical results.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3