Stress–Strain Behavior of SAC305 at High Strain Rates

Author:

Lall Pradeep1,Shantaram Sandeep2,Suhling Jeff2,Locker David3

Affiliation:

1. Department of Mechanical Engineering, NSF-CAVE3 Electronics Research Center, Auburn University, Auburn, AL 36849 e-mail:

2. Department of Mechanical Engineering, NSF-CAVE3 Electronics Research Center, Auburn University, Auburn, AL 36849

3. U.S. AMRDEC, Redstone Arsenal, Huntsville, AL 35802

Abstract

Electronic products are subjected to high G-levels during mechanical shock and vibration. Failure-modes include solder-joint failures, pad cratering, chip-cracking, copper trace fracture, and underfill fillet failures. The second-level interconnects may be experience high strain rates and accrue damage during repetitive exposure to mechanical shock. Industry migration to lead-free solders has resulted in proliferation of a wide variety of solder alloy compositions. One of the popular tin-silver-copper alloys is Sn3Ag0.5Cu. The high strain rate properties of lead-free solder alloys are scarce. Typical material tests systems are not well suited for measurement of high strain rates typical of mechanical shock. Previously, high strain rates techniques such as the split Hopkinson pressure bar (SHPB) can be used for strain rates of 1000 s−1. However, measurement of materials at strain rates of 1–100 s−1 which are typical of mechanical shock is difficult to address. In this paper, a new test-technique developed by the authors has been presented for measurement of material constitutive behavior. The instrument enables attaining strain rates in the neighborhood of 1–100 s−1. High-speed cameras operating at 300,000 fps have been used in conjunction with digital image correlation (DIC) for the measurement of full-field strain during the test. Constancy of crosshead velocity has been demonstrated during the test from the unloaded state to the specimen failure. Solder alloy constitutive behavior has been measured for SAC305 solder. Constitutive model has been fit to the material data. Samples have been tested at various time under thermal aging at 25 °C and 125 °C. The constitutive model has been embedded into an explicit finite element framework for the purpose of life-prediction of lead-free interconnects. Test assemblies has been fabricated and tested under Joint Electron Device Engineering Council (JEDEC) JESD22-B111 specified condition for mechanical shock. Model predictions have been correlated with experimental data.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3