Optimal Biped Walking Locomotion Solved by Trajectory Planning Method

Author:

Ono Kyosuke1,Liu Rongqiang2

Affiliation:

1. Department of Mechanical Engineering and Control, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo, 152-8552, Japan

2. Department of Mechanical Engineering, Harbin Institute of Technology, 92 West Dazhi St., Nangang, Harbin, 150001, China

Abstract

This paper describes an optimal trajectory planning of walking locomotion for a planar biped walking mechanism which has thighs, shanks and small feet. The biped mechanism was modeled to be a 3-degree-of-freedom (dof) link system composed of a stance leg and a 2-dof swing leg. The one step walking locomotion is divided into two phases, i.e., the swing motion of 2-dof swing until knee collision and the swing motion of the straight leg until toe collision. It is assumed that the knee collision of the swing leg and the toe collision at the foot exchange are plastic and occur instantly. The motion of the swing and stance legs in the first phase is solved by the optimal trajectory planning based on the function approximation method. Under the full-actuated condition at the hip, knee and ankle joints, we obtained the optimal trajectory solution with a minimum square integral of input torque. We also obtained a sub-optimal walking locomotion for an under-actuated system whose ankle is a passive joint. The validity of the optimal trajectory solution is confirmed by a forward dynamic simulation. The optimal trajectory solution for the human body parameter values exhibits a natural and stable walking locomotion with the step length of 0.33 m and a step period of 0.62 s.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3