Dynamic Walk of a Biped

Author:

Miura Hirofumi1,Shimoyama Isao1

Affiliation:

1. Department of Mechanical Engineering Faculty of Engineering University of Tokyo Bunkyo-ku, Tokyo, 113 Japan

Abstract

The authors have developed five kinds of biped locomotive robots so far. They are named BIPER-1, 2, 3, 4, and 5. All of them are statically unstable but can perform a dynamically stable walk with suitable control. BIPER-1 and BIPER-2 walk only sideways. BIPER-3 is a stilt-type robot whose foot contacts occur at a point and who can walk sideways, back ward, and forward. BIPER-4's legs have the same degrees of freedom as human legs. BIPER-5 is similar to BIPER-3, but in the case of BIPER-5 all apparatus, such as the computer, are mounted on it. This paper deals with the control theory used for BIPER-3 and BIPER-4. In both cases, basically the same control method is applied. The most important point is that the mo tion of either robot during the single-leg support phase can be approximated by the motion of an inverted pendulum. Ac cordingly, in this paper, dynamic walk is considered to be a series of inverted-pendulum motions with appropriate condi tions of connection.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Reference3 articles.

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial neural network-based ground reaction force estimation and learning for dynamic-legged robot systems;PeerJ Computer Science;2023-12-15

2. Neural Volumetric Memory for Visual Locomotion Control;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. ViNL: Visual Navigation and Locomotion Over Obstacles;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

4. A review on gait generation of the biped robot on various terrains;Robotica;2023-02-15

5. Footstep adjustment for biped push recovery on slippery surfaces;Multibody System Dynamics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3