On Some Problems With Modeling of Coulomb Friction in Self-Locking Mechanisms

Author:

Wojtyra Marek1

Affiliation:

1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, Warsaw 00-665, Poland e-mail:

Abstract

Friction significantly influences the mechanical system dynamics, especially when self-locking property is observed. The Coulomb model is frequently adopted to represent friction in multibody analysis and simulation. It can be shown that in some extreme cases of joint friction modeling, problems with solution uniqueness and existence are encountered, even when only bilateral constraints and kinetic regime of friction are considered. These problems are studied in detail in the paper. To approach the investigated subject, a wedge mechanism, viewed as a simplified model of a speed reducer, is studied. Two different mathematical models of joint friction are used, both based on the Coulomb friction law. The first version of the model is purely rigid, i.e., no deflections of the mechanism bodies are allowed. Constraints are imposed to maintain the ratio between input and output velocity. The second version of the model allows deflection of the frictional contact surface, and forces proportional to this deflection are applied to contacting bodies (no constraints to maintain the input–output velocity ratio). Using the rigid body model, it is shown that when friction is above the self-locking limit, paradoxical situations may be observed when kinetic friction is investigated. For some sets of parameters of the mechanism (gearing ratio, friction coefficient, and inertial parameters), two distinct solutions of normal and friction forces can be found. Moreover, for some combinations of external loads, a solution that satisfies equations of motion, constraints, and the Coulomb friction law does not exist. Furthermore, for appropriately chosen loads and parameters of the mechanism, infinitely many feasible sets of normal and friction forces can be found. Investigation of the flexible body model reveals that in nonparadoxical situations the obtained results are closely similar to those predicted by the rigid body model. In previous paradoxical situations, no multiple solutions are found; however, problems with stability of solutions emerge. It is shown that in regions for which the paradoxes were observed only unstable solutions are available. The origins of paradoxical behavior are identified and discussed. The key factors determining the model performance are pointed out. Examples of all indicated problematic situations are provided and analyzed. Finally, the investigated problems are commented from more general perspectives of multibody system dynamics.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference19 articles.

1. Multibody Modelling of a Tracked Robot’s Actuation System,2013

2. Modeling and Simulation of Self-Locking Drives;Mech. Mach. Theory,1995

3. Self-Locking Analysis in Closed Kinematic Chains;Mech. Mach. Theory,2009

4. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction;Automatica,1994

5. Efficient Simulation of a Dynamic System With LuGre Friction;ASME J. Comput. Nonlinear Dyn.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3