Efficient Simulation of a Dynamic System with LuGre Friction

Author:

Do Nguyen B.1,Ferri Aldo A.1,Bauchau Olivier A.2

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-015

Abstract

Friction is a difficult phenomenon to model and simulate. One promising friction model is the LuGre model, which captures key frictional behavior from experiments and from other friction models. While displaying many modeling advantages, the LuGre model of friction can result in numerically stiff system dynamics. In particular, the LuGre friction model exhibits very slow dynamics during periods of sticking and very fast dynamics during periods of slip. This paper investigates the best simulation strategies for application to dynamic systems with LuGre friction. Several simulation strategies are applied including the explicit Runge–Kutta, implicit Trapezoidal, and implicit Radau-IIA schemes. It was found that both the Runge–Kutta and Radau-IIA methods performed well in simulating the system. The Runge–Kutta method had better accuracy, but the Radau-IIA method required less integration steps.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference25 articles.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3