Aeroelastic Investigation of a Transonic Research Compressor

Author:

Leichtfuß S.1,Holzinger F.1,Brandstetter C.1,Wartzek F.1,Schiffer H. P.1

Affiliation:

1. Technische Universität Darmstadt, Darmstadt, Germany

Abstract

The trend in modern compressor design is towards higher stage loading and less structural damping, resulting in increased flutter risk. The understanding of the underlying aeroelastic effects, especially at highly loaded BLISK rotors, is small. This paper reports on the analysis of flutter phenomena in a modern transonic compressor. The geometry examined here is the one-and-a-half stage transonic research compressor operated by Technische Universität Darmstadt. High blade deflections recorded during throttling measurements point to an aerodynamic excitation. Therefore, numerical investigations are carried out using the CFD-Code TRACE developed at the German Aerospace Center (DLR). Simulations are compared to measured compressor speed lines to validate the steady state results. The open source Finite Element code CalculiX is used to simulate the rotor blade eigenmodes and -frequencies. The results are then used in time-linearized calculations to determine the onset of flutter. These calculations confirm that there is an aerodynamic excitation of the first torsional eigenmode and blade flutter is at risk. A sensitivity study is carried out to further investigate the aerodynamic conditions under which structural vibrations become unstable and to identify influencing factors.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3