Utilization of Fast Response Pressure Measurements to Non-Intrusively Monitor Blade Vibration in Axial Compressors

Author:

Leng Yujun1,Key Nicole L.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, 500 Allison Road, West Lafayette, IN 47907

Abstract

Abstract A novel non-intrusive method has been developed to monitor rotor blade vibration using unsteady casing pressure. The present blade vibration monitoring technique utilizes casing unsteady pressure sensors that can detect the pressure waves associated with blade vibration. Spinning mode theory was used to identify the specific frequencies and nodal diameters (NDs) of the spinning pressure waves associated with the blade vibration. A dual temporal-spatial analysis method has been developed to extract the specific frequency components using Fourier transforms, and the specific ND component was extracted using a circumferential mode-fitting algorithm. An experimental study was done in the Purdue 3-stage axial research compressor to verify the new rotor blade vibration monitoring method against the blade tip timing (BTT) method. During the experiment, the compressor was swept through the resonant crossing speed corresponding to the first torsion (1T) vibratory mode of the embedded rotor, while the unsteady casing pressure data and BTT data were simultaneously acquired. Utilizing as few as two sensors, the pressure wave due to blade forced vibration was extracted. A constant scaling factor between the resultant pressure wave strength and blade deflection amplitude was calculated for two different loading conditions. The close match between blade vibration-generated pressure wave strength and blade deflection amplitude through the resonant range provides the validation for the new rotor blade vibration monitoring method. This is the first time in the open literature that blade vibration-related pressure waves have been extracted from casing pressure sensor arrays and used to quantify blade vibration.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3