Study on Heat Conduction in a Simulated Multicore Processor Chip—Part II: Case Studies

Author:

Nakayama Wataru1

Affiliation:

1. Fellow ASME ThermTech International, 920-7 Higashi Koiso, Oh-Iso Machi, Kanagawa 255-0004, Japan e-mail:

Abstract

The objective of this study is to understand the effects of various parameters involved in the chip design and cooling on the occurrence of hot spots on a multicore processor chip. The thermal environment for the die is determined by the cooling design which differs distinctly between different classes of electronic equipment. In the present study, like many other hot spot studies, the effective heat transfer coefficient represents the thermal environment for the die, but, its representative values are derived for different cooling schemes in order to examine in what classes of electronic equipment the hot spot concern grows. The cooling modes under study are high-performance air-cooling, high-performance liquid-cooling, conventional air-cooling, and oil-cooling in infrared radiation (IR) thermography setup. Temperature calculations were performed on a model which is designed to facilitate the study of several questions that have not been fully addressed in the existing literature. These questions are concerned with the granularity of power and temperature distributions, thermal interactions between circuits on the die, the roles of on-chip wiring layer and the buried dioxide in heat spreading, and the mechanism of producing temperature contrast across the die. The main results of calculations are the temperature of the target spot and the temperature contrast across the die. Temperature contrasts are predicted in a range 10–25 K, and the results indicate that a major part of the temperature contrast is formed at a granularity corresponding to the size of functional units on actual microprocessor chips. At a fine granularity level and under a scenario of high power concentration, the on-chip wiring layer and the buried oxide play some roles in heat spreading, but their impact on the temperature is generally small. However, the details of circuits need to be taken into account in future studies in order to investigate the possibility of nanometer-scale hot spots. Attention is also called to the need to understand the effect of temperature nonuniformity on the processor performance for which low temperature at inactive cells makes a major contribution. In contrast to the situation for the die under forced convection cooling, the die in passively cooled compact equipment is in distinctly different thermal environment. Strong thermal coupling between the die and the system structure necessitates the integration of package and system level analysis with the die-level analysis.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3