Heat in Computers: Applied Heat Transfer in Information Technology

Author:

Nakayama Wataru1

Affiliation:

1. ASME Life Fellow ThermTech International, 920-7 Higashi Koiso, Oh-Iso Machi, Kanagawa 255-0004, Japan e-mail:

Abstract

Since the advent of modern electronics technology, heat transfer science and engineering has served in the development of computer technology. The computer as an object of heat transfer research has a unique aspect; it undergoes morphological transitions and diversifications in step with the progress of microelectronics technology. Evolution of computer's hardware manifests itself in increasing packing density of electronic circuits, modularization of circuit assemblies, and increasing hierarchical levels of system internal structures. These features are produced by the confluence of various factors; the primary factors are the pursuit of ever higher processing performance, less spatial occupancy, and higher energy utilization efficiency. The cost constraint on manufacturing also plays a crucial role in the evolution of computer's hardware. Besides, the drive to make computers ubiquitous parts of our society generates diverse computational devices. Concomitant developments in heat generation density and heat transfer paths pose fresh challenges to thermal management. In an introductory part of the paper, I recollect our experiences in the mainframe computers of the 1980s, where the system's morphological transition allowed the adoption of water cooling. Then, generic interpretations of the hardware evolution are attempted, which include recapturing the past experience. Projection of the evolutionary trend points to shrinking space for coolant flow, the process commonly in progress in all classes of computers today. The demand for compact packaging will rise to an extreme level in supercomputers, and present the need to refocus our research on microchannel cooling. Increasing complexity of coolant flow paths in small equipment poses a challenge to a user of computational fluid dynamics (CFD) simulation code. In highly integrated circuits the paths of electric current and heat become coupled, and coupled paths make the electrical/thermal codesign an extremely challenging task. These issues are illustrated using the examples of a consumer product, a printed circuit board (PCB), and a many-core processor chip.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference72 articles.

1. Cramming More Components Onto Integrated Circuits;Electronics Mag.,1965

2. Schmidt, R., and Iyenger, M., 2008, “Information Technology Energy Usage and Our Planet,” Proc. ITHERM 08, May 28–31, Orlando, FL, pp. 1255–1275.

3. Balance of Power: Dynamic Thermal Management for Internet Data Centers;IEEE Internet Comput.,2005

4. The Heat Transfer Society of Japan, the Fiftieth Anniversary: Retrospect and Prospect;Heat Transfer Eng.,2013

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3