Underfill Flow in Flip-Chip Encapsulation Process: A Review

Author:

Ng Fei Chong1,Abas Mohamad Aizat1

Affiliation:

1. School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang 14300, Malaysia

Abstract

Abstract The scope of review of this paper focused on the precuring underfilling flow stage of encapsulation process. A total of 80 related works has been reviewed and being classified into process type, method employed, and objective attained. Statistically showed that the conventional capillary is the most studied underfill process, while the numerical simulation was mainly adopted. Generally, the analyses on the flow dynamic and distribution of underfill fluids in the bump array aimed for the filling time determination as well as the predictions of void occurrence. Parametric design optimization was subsequently conducted to resolve the productivity issue of long filling time and reliability issue of void occurrence. The bump pitch was found to the most investigated parameter, consistent to the miniaturization demand. To enrich the design versatility and flow visualization aspects, experimental test vehicle was innovated using imitated chip and replacement fluid, or even being scaled-up. Nonetheless, the analytical filling time models became more accurate and sophiscasted over the years, despite still being scarce in number. With the technological advancement on analysis tools and further development of analytic skills, it was believed that the future researches on underfill flow will become more comprehensive, thereby leading to the production of better packages in terms of manufacturing feasibility, performances, and reliability. Finally, few potential future works were recommended, for instance, microscopic analysis on the bump–fluid interaction, consideration of filler particles, and incorporation of artificial intelligence.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning and analytical study of void regional formation in flip-chip underfilling process;Soldering & Surface Mount Technology;2023-10-24

2. Capillary Underfill Flow Simulation as a Design Tool for Flow-Optimized Encapsulation in Heterogenous Integration;Micromachines;2023-09-30

3. Low Temperature Fine Pitch All-Copper Interconnects Combining Photopatternable Underfill Films;2023 IEEE 73rd Electronic Components and Technology Conference (ECTC);2023-05

4. A Study of Underfill Dispensing Patterns in Flip-Chip Packaging;2023 International Conference on Electronics Packaging (ICEP);2023-04-19

5. Two-Phase Flow Simulation of Capillary Underfilling as a Design Tool for Heterogenous Integration;2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3