The Potential of a Separated Electric Compound Spark-Ignition Engine for Hybrid Vehicle Application

Author:

Pipitone Emiliano1,Caltabellotta Salvatore2

Affiliation:

1. Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 8, Palermo 90128, Italy

2. Department of Engineering, University of Palermo, Viale delle Scienze, Palermo 90128, Italy

Abstract

Abstract In-cylinder expansion of internal combustion engines based on Diesel or Otto cycles cannot be completely brought down to ambient pressure, causing a 20% theoretical energy loss. Several systems have been implemented to recover and use this energy such as turbocharging, turbomechanical and turbo-electrical compounding, or the implementation of Miller cycles. In all these cases however, the amount of energy recovered is limited allowing the engine to reach an overall efficiency incremental improvement between 4% and 9%. Implementing an adequately designed expander–generator unit could efficiently recover the unexpanded exhaust gas energy and improve efficiency. In this work, the application of the expander–generator unit to a hybrid propulsion vehicle is considered, where the onboard energy storage receives power produced by an expander–generator, which could hence be employed for vehicle propulsion through an electric drivetrain. Starting from these considerations, a simple but effective modeling approach is used to evaluate the energetic potential of a spark-ignition (SI) engine electrically supercharged and equipped with an exhaust gas expander connected to an electric generator. The overall efficiency was compared to a reference turbocharged engine within a hybrid vehicle architecture. It was found that, if adequately recovered, the unexpanded gas energy could reduce engine fuel consumption and related pollutant emissions by 4–12%, depending on overall power output.

Funder

University degli Studi di Palermo

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3